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Abstract - In modern networks, where stronger ultra-low latency and data throughput are needed, Multi-Access Edge 

Computing (MEC) becomes a necessary architecture for 5G/6G networks that support real-time applications. Nevertheless, a 

dynamic edge ecosystem, diverse device properties, and privacy preservation needs interfere with MEC resource management. 

This paper proposes a new Federated Learning (FL) framework to predict resource allocation in MEC that removes such 

barriers by enabling decentralized model training to be performed directly at the network edge. In contradiction to 

conventional centralized strategies, our approach significantly reduces communication costs by up to 90% while providing 

competitive performance due to the efficient use of non-IID data at edge locations. Feeding lightweight CNNs and reducing the 

whole energy demand is achieved by the balanced computational requirements in the design aggregation through FedOpt 

aggregation. Based on the results of outcome analysis on MNIST and Fashion-MNIST, we observe accelerated convergence, 

increased energy savings and performance scalability, where energy consumption per training round is 29% lower than in 

centralized systems. This approach shows impressive results in processing non-IID data due to reliable performance on 

different edge devices. Such discoveries show that FL has a high potential to transform MEC resource allocation and thus 

contribute to more adaptive, protected, and efficient edge computing architecture. 

 

Keywords - Federated Learning, Multi-Access Edge Computing, Resource Allocation, 5G/6G Networks, Non-IID Data, 

Distributed Machine Learning, Energy Efficiency, Model Aggregation. 

 

1. Introduction 
Modern networking has significantly been boosted with 

Multi-Access Edge Computing (MEC), enabling increased 

computational and storage aspects nearer to the end users. [1-

3] The reduced distance between users and resources in MEC 

networks results in lower latency levels, excludes network 

bottlenecks and improves the quality of service for such 

latency-sensitive applications as augmented reality, 

autonomous vehicles and industrial control systems. 

However, the explosion of connected devices and data-

devouring applications creates a new requirement to manage 

and perform the distribution of resources at the network's 

edge. Conventionally, bandwidth constraints, high latency, 

and the limitations of centralized processing present 

obstacles that tend to plague such cloud-centric systems with 

these requirements, challenges that are especially difficult to 

solve. Efficient use of distributed resources in the MEC 

environments calls for rapid, data-driven decisions to 

maximize performance. Centralized deployment of machine 

learning models places many restrictions on their capability 

to address the requirements of MEC environments. 

Conventionally centralized methods necessitate continuous 

sending of data from the end nodes to the central server, 

which puts heavy demands on the bandwidth and opens 

doors to privacy concerns. Such concerns are particularly 

acute across healthcare, finance, and critical infrastructure 

industries, where data confidentiality is the highest priority. 

In order to address this, Federated Learning (FL) has been 

designed as a decentralized approach that allows edge 

devices to collaborate and train machine learning models, 

which remain private at the edge. Federated learning 

addresses privacy because local storage of confidential data 

is only shared on the server if parameters of well-trained 

models are utilized. Federated learning that has less 

consumption bandwidth and improved privacy provides an 

efficient solution for the desirable performance of MEC 

systems. Embedding federated learning into resource 

allocation systems allows edge networks to produce more 

accurate, current predictions while maintaining strict privacy 

requirements. This paper introduces the proposed federated 

learning framework that balances resource allocation in MEC 

contexts. Our framework uses local processing to make 

accurate predictions with the least dependence on network 

bandwidth. Our method has improved latency, resource 

distribution, and network efficiency through rigorous 

simulation and practical test cases. With such a foundation, 
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this paper's focus bridges the gap between progressive edge 

intelligence methodologies and practical edge computing 

deployments. 

 

2. Related Work 
To realize the full potential of Multi-Access Edge 

Computing (MEC) in future networks requires sophisticated 

allocation of resources and adaptive task management. [4-6] 

This article focuses on important progressions in three basic 

areas. Resource allocation methodologies in MEC focus on 

machine learning-based approaches to efficiently adapt 

resources and review federated learning as a viable, secure 

option for training in distributed regimes. 

 

2.1. Resource Allocation in MEC 

As the deployment of 5G and 6G continues to 

accelerate, resource allocation of MEC systems has become 

increasingly important to meet the requirement of ultra-low 

latency and high reliability. However, in the early stages, 

mathematical optimization methods such as Mixed-Integer 

Linear Programming (MILP) were adopted for task 

offloading management, energy efficiency management, and 

server load balancing. The in-depth survey conducted by 

Annisa et al. centred on dynamic resource orchestration for 

Ultra-Reliable Low-Latency Communication (URLLC), 

outlining the complexities of being in a multi-tenant edge 

setting. Traditional optimization techniques usually fail when 

implemented against large-scale MEC operations' fast-paced 

and distributed nature, which is a key aspect of success in 

managing smaller networks. Recent days have seen a 

synergizing effect of stochastic control techniques such as 

Lyapunov optimization and MILP to enhance stability and 

reduce the cost of implementation in Ultra-Dense Networks 

(UDNs). For example, the LYMOC algorithm reduced 

system costs by 30% through dynamic allocation of mobile 

devices to the most suitable MEC servers, depending on 

current traffic conditions. These strategies are especially 

suitable for environments with many connected devices via 

managing the trade-offs between latency, energy savings and 

computational overhead. However, as more complex and 

larger networks emerge, traditional optimization 

methodologies fail to deliver, leading researchers to seek 

more flexible and data-informed alternatives. 

 

2.2. Machine Learning in MEC 

Machine Learning (ML) has played out as a powerful 

tool for managing resources in MEC, whereby systems can 

learn smoothly to accommodate shifting network situations. 

Reinforcement Learning (RL) differs in its ability to facilitate 

autonomous and unsupervised long-term decision-making. 

Techniques from deep reinforcement learning, such as 

RAPG-DDPG, have significantly reduced latency and energy 

expenses through repeated learning of optimal task 

offloading policies with continuous interaction with the 

network environment. These approaches outperform 

traditional heuristics, reducing latency by 15-20% through 

adaptive offloading of the computation tasks to local devices 

and edge servers. The application of supervised learning 

algorithms enables the forecasting of network congestion and 

server occupancy, enabling resource management to respond 

faster. The integration of RL with Graph Neural Networks 

(GNNs) has been explored to increase the scalability of edge-

cloud systems in environments with heterogeneous devices. 

These systems can effectively model the complex network 

structures of MEC environments, thus yielding promising 

results in multi-tier edge computing scenarios that require 

low latency and efficient power usage. Even though there has 

been an improvement in the rate at which there have been 

improvements, the resource constraints encountered by edge 

devices continue to present challenges to real-time model 

training and inference, leading to increased efforts to develop 

more efficient learning techniques. 

 

2.3. Federated Learning Techniques 

Federated Learning (FL) is a promising solution for 

MEC because it offers an efficient alternative to centralized 

learning despite challenges such as data privacy and 

communication overhead. The edge devices that use FL can 

train a standard model in concert by merely sending the 

gradients or even the parameters without sending raw data, 

which, in turn, will reduce the bandwidth requirements and 

protect the users' privacy. Federated learning is critical for 

IIoT applications when sensitive operational data remain 

local and do not have to traverse networks. Advanced FL 

architectures have been developed to optimize training 

efficiency in MEC contexts. For instance, utilizing local edge 

devices on nearby MEC servers to perform partial 

computation in M-layer FE architectures can reduce training 

latency by about 40% compared to classical centralized 

models. These frameworks can meet the need for tight 

latency restrictions by adaptively allocating computational 

and bandwidth resources and thus preserve high model 

performance while speeding up training. Lyapunov-based 

Federated Learning (FL) systems have been proposed to 

control energy usage and have an equitable distribution of 

resources, making them suitable for dense and heterogeneous 

network environments. We work extensively towards 

improving FL in a real-time scenario with a minimal 

resource state, as present in the MEC architectures. 

 

3. System Model and Problem Formulation 
3.1. MEC System Architecture 

The architecture for federated learning-based resource 

allocation in MEC consists of three main layers: The system 

effectiveness and performance are driven by such key 

building blocks as End Devices, Edge Layer (MEC Nodes) 

and Cloud/Model Training Layer. [7-10] This layered 

approach reflects the MEC systems' actual hierarchy, 

directing data from end devices toward edge nodes and, 

finally, to the cloud for complete model processing and 

continuous data storage.  
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Fig. 1 Federated Learning Architecture for Resource Allocation in MEC 
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This approach distributes computations efficiently, 

minimizes latency, and enhances data privacy. The base layer 

is the End Devices Layer, which is composed of many IoT 

devices that generate and use colossal amounts of real-time 

data. The IoT devices have regularly sent the local context 

and usage metrics such as CPU load, memory status and 

network traffic to their respective edge node. It is essential 

for decision-making regarding resource distribution at this 

level to accurately track site-specific data here. As such, it 

becomes the foundation for the federated learning clients that 

ingest this data at the edge to carry out their training 

activities. The Edge Layer (MEC Nodes) serves as the 

intermediate tier that houses the Federated Learning clients 

(FL Clients), making it possible for data to be processed. 

Each edge node has a Local Resource Monitor that monitors 

the real-time CPU, RAM, and network bandwidth 

allocations. Edge-based FL Clients train their models based 

on local data collection and produce them to the central FL 

aggregator, which aggregates and improves them. 

Implementing this distributed training regime will 

substantially reduce the need to transfer raw data elements 

that strengthen privacy and save bandwidth. At the highest 

level of the hierarchy is the Cloud/Model Training layer, 

which can be considered a central repository for holding 

models' backups and recording previous data logs.  

 

This node controls the FL Aggregator and the Global 

Resource Allocation Module, making it possible to aggregate 

and optimize models produced by edge nodes that 

participate. Refinement of the updated global model is then 

distributed across each edge node, leading to better 

predictions of resource distribution. Moreover, the layer 

involves a Policy Engine that utilizes pre-set rules to disperse 

computational loads and encourage an efficient sharing of 

resources on the entire MEC network. The architecture 

enables efficient, private management of resources through 

federated learning by coordinating allocations among a huge 

heterogeneous network of edge devices. By eliminating 

centralized data handling and storage, this architecture 

provides lower latency and more resilience, which increases 

MEC systems' scalability and flexibility for the expanding 

number of IoT and real-time applications. 

 

3.2. Dynamic Resource Allocation in MEC Nodes 

Dynamic resource allocation in MEC nodes is necessary 

for efficient and responsive edge computing. Unlike 

traditional cloud settings, MEC nodes must accommodate 

frequently changing workload demands while providing low 

latency and high throughput. The real-time adaptation of 

computational, storage, and networking resources is needed 

to suit the varying demands and the network environments 

observed at MEC nodes. Being supportive of such 

applications as augmented reality, industrial automation, and 

real-time analytics, MEC nodes face significant challenges in 

ensuring adequate resource management optimisation. 

 

MEC nodes can adjust resource allocation strategies 

without human intervention by leveraging immediate data 

from end devices such as CPU and memory utilization and 

network traffic patterns. This strategy reduces the overhead 

of communication required to facilitate central control and 

increases the rate of the responses. To offer another instance, 

MEC nodes include resource monitors that track current 

resource availability and utilization patterns and are further 

considered by machine learning models to predict optimal 

resource distribution. Federated learning, however, augments 

this by enabling MEC nodes to collectively train global 

models while keeping the individual data private and 

reducing network traffic. By employing self-directed 

resource management, nodes in the MEC architecture gain 

optimal efficiency and thus increase overall system 

performance. 

 

Dynamic resource allocation should consider the wide 

range of capabilities of connected devices in MEC, including 

various levels of computational power, energy storage and 

data production rates. With many device capabilities, MEC 

systems should use dynamic, context-aware resource 

management strategies to optimize service to any edge node 

and application's unique conditions and user requirements. 

While real-time monitoring accompanies predictive 

algorithms in empowering MEC systems, optimising 

resource distribution reduces latency and improves overall 

service delivery. 

 

3.3. Optimization-Based Resource Management 

Formulation 

Optimization-based methods form a core approach 

towards resource allocation in MEC platforms, promoting 

systematic balancing of various objectives such as reducing 

latency, saving energy and increasing throughput. 

Conventional methods frame resource allocation as a 

constrained optimization exercise to find an optimal 

distribution of computational and networking resources with 

respect to system specifications and end-user expectations. 

Mathematically, [11-13] this corresponds to a multi-objective 

optimization framework where the objective function 

embodies the dynamics among key performance indicators 

like response speed, computational demands and bandwidth 

availability. A common objective is to optimize the quickest 

completion of all tasks at MEC nodes and energy 

consumption under specified boundaries. Properly 

characterizing task arrival rates, processing delays, and 

resource availability so that how they interact can be clear is 

key but complicated by the dynamic and uncertain conditions 

that pervade edge networks. As a reaction to such challenges, 

methods such as Lyapunov optimization and deep 

reinforcement learning have developed, using instantaneous 

changes in the network and analytical forecasts for 

optimization. Continuous adjustment of resource allocation 

in regard to the real-time network metrics allows these 
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approaches to continue providing successful task scheduling 

in densely populated edge networks. Moreover, the 

combination of machine learning in entity optimization 

strategies has shown its potential to improve scalability and 

real-time response, thus making such hybrid methods an 

ideal solution for upcoming MEC systems. 

 

3.4. System Constraints and Assumptions 

A robust framework for resource distribution in MEC 

systems relies on taking insights to grant room to operation 

limitations and assumptions that prevail around the system. 

These restrictions are often a function of edge infrastructure 

physical confines, bandwidth restrictions of the network, 

susceptibility to low latency and the significant disparity of 

performance specification across connected devices. 

Consequently, the MEC nodes often face power constraints, 

so resource-saving algorithms should be developed to 

optimise efficiency and maintain high-quality service 

provision.  

 

End devices in MEC systems are highly diverse, from 

low-powered resources in IoT sensors to high-performance 

industrial controls, complicating the management of 

resources. So many variations between the end devices result 

in significant variations in data creation, computational 

capacity, and network availability that present challenges in 

devising standard resource allocation guidelines. 

 

Furthermore, bandwidth and latency networks are also 

commonly edged in remote or congested urban 

environments, increasing resource allocation's complexity 

tremendously. In many MEC systems, uniformity of the 

network and stable performance are assumed, even though 

the former is rarely aligned with the diverse and changing 

realities of deployed systems.  

 

However, advanced models incorporate random 

variables to reflect edge networks' stochastic nature, 

increasing resource distribution techniques' accuracy and 

robustness. With the addition of mobility, volatile 

connectivity, and fluctuating workloads, these models deliver 

workable and deployable solutions in realistic environments. 

 

4. Federated Learning Framework 
Federated Learning (FL) identifies itself as a 

groundbreaking approach towards distributed machine 

learning since it enables collaborative learning practices 

without compromising private data security. [14-16] The 

framework is best in Multi-Access Edge Computing (MEC) 

environments, which have multiple IoT devices, sensors, and 

mobile applications that provide data at the network's edge. 

By training local models on these edge devices and only 

sharing incremental updates, FL significantly reduces 

communication costs, ensures sensitive information is 

secured against leakage and reduces threats involving data 

exposure. 

The FL framework in MEC is designed to address 

unique issues associated with edge networks, including 

restricted bandwidth, variances regarding device capabilities, 

and highly variable network conditions. Instead of sending 

data for upload to a cloud server during the training process, 

which is commonly practised in normal learning paradigms, 

FL allows edge nodes to train and process their local data. 

Using a decentralized system, the framework reduces the 

need for constant data transfers. It allows for real-time 

learning, which is critical to applications requiring low 

latency, such as autonomous vehicles, healthcare systems 

and manufacturing processes. In order to deal with the 

tension between model accuracy and communication 

demands, federated learning platforms usually employ state-

of-the-art aggregation algorithms. For example, federated 

averaging (FedAvg) uses local training epochs and data 

volume to collect updates from edge devices, enabling 

efficient communication with model integrity. Progressions 

such as hierarchical federated learning incorporate several 

aggregation stages inside the MEC nodes, enhancing 

bandwidth efficiency and computational performance. This 

approach not only incorporates the distributed nature of edge 

computing architecture but also caters to the requirements of 

applications that increasingly need a fast response time and 

robust data protection. 

 

4.1. Overview of Federated Learning 

Federated Learning allows for collaborative training of a 

single global model that belongs to different devices with the 

specific advantage of not using private data. Traditional 

centralized learning has difficulty achieving privacy and 

scalability; Federated Learning reduces the problem as the 

training procedure is localized. In a regular FL procedure, 

devices locally train the models on private datasets and send 

their emerging parameters (for instance, weights and 

gradients) to a central server for aggregation purposes. The 

server computes the aggregated updates, updates the global 

model, and forwards the updated global model back to all 

devices participating in the training to continue the process. 

 

This decentralized training comes with several important 

advantages. In essence, FL reduces the communication 

burden by only acting from model update exchange, 

eliminating the need to transfer full datasets. This method 

becomes very useful for MEC systems, where bandwidth is 

often constrained, and immediate response is critical. 

Second, the decentralized character of FL inherently provides 

data privacy protection by storing sensitive information on a 

local device and reducing the probability of data leaks and 

compliance issues. The fact is that FL is well-suited for 

healthcare, finance and smart city applications, where strict 

data confidentiality is needed. Moreover, FL systems are 

arranged flexibly, accommodating different computational 

powers and data distributions on the edge devices, and, in 

turn, each node trains its model on its own. As FL is framed 

to operate with varied device properties, it is thus better 



Ramesh Kasarla / IJCTT, 73(5), 101-112, 2025 

 

106 

equipped to tolerate variation in performance between IoT 

devices, smartphones, and industrial sensors, thus increasing 

the overall network stability and effectiveness. Additional 

challenges employed when FL is implemented include the 

management of non-IID data reliability of devices and 

adapting to the asynchronous training, all of which must be 

handled effectively to retain consistent model accuracy in the 

network. 

 

In response to the above problems, several creative 

optimization techniques have been developed, which include 

personalized FL, gradient compression, and asynchronous 

aggregation, all aimed at enhancing model convergence, 

reducing data transfer requirements and improving the 

overall flexibility of the systems.  

 

This, therefore, makes FL critically important in 

facilitating intelligent and real-time decision-making in MEC 

systems that, in turn, underpin the development of 

sophisticated, perceptually against, secure and scalable edge 

computing networks. 

Fig. 2 Federated Learning Workflow in MEC Systems 
 

4.2. Client and Server Interaction in MEC 

Multi-Access Edge Computing (MEC) client-server 

communication differs entirely from typical cloud-based 

configurations. Decentralization of the data processing and 

storage in MEC enables organizations to significantly reduce 

latencies and increase the real-time processing efficiency for 

end users. Such an architectural approach is indispensable if 

autonomous vehicles, augmented reality, and industrial 

Internet of Things devices are to effectively deploy latency-

critical applications that require quick data interaction and 

low latency. 

 

Mobile and fixed-line consumers, such as smartphones, 

connected vehicles, and smart buildings, are the major data 

providers in this configuration, continually transporting 

contextual data, sensor information, and user activity to local 

MEC servers. Edge servers inside Edge Compute Data 

Centers are the primary access channel for handling local 

computational work, reducing round-trip latency common in 

conventional cloud-based systems. By being near the data 

source, these solutions promote faster decisions and local 

data analysis, leading to an improved end-user experience.  

 

The promotion of an Edge Compute Data Center 

configuration includes the following areas: MEC servers for 

computational purposes, Firewall/NAT for security, vSRX 

Secure Gateways to preserve data transmission, and MEC 

Hosting Infrastructure for the virtualization of network 

services. Combining these elements enables low-latency, 

resource-rich data processing at the edge, eliminating the 

necessity of long network travel to reach a centralized cloud.  

 

Locally processing data is imperative as the applications 

require fast response and high bandwidth continuity. When 

the edge process is complete, data is forwarded to the Core 

Network for further data aggregation, long-term storage, or 

analytical analysis in a centralized cloud-based environment. 

By its layered construction, MEC solutions can ensure 

responsive processes and provide comprehensive data 

processing to improve general network resource 

management. Further, the MEC layer is critical in linking the 

edge processing capabilities and the internet to ensure no 

data exchange disruption. 

 

 
Fig. 3 MEC Client-Server Interaction Architecture 

 

The interaction model provided in MEC brings a 

significant difference from a cloud-based system, thus 

helping to make the data infrastructure much more dynamic, 

timely and secure. This design enables real-time processing 

and strengthens network resilience and scalability, making it 

an integral part of the 5G/6G network architecture.
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4.3. Model Aggregation Strategy (e.g., FedAvg or Other 

Variants) 

The strategy for aggregation of models used within 

Federated Learning (FL) for MEC has a massive effect on 

global model efficiency and accuracy. [17-20] Federated 

Averaging (FedAvg) is one of the most popular approaches, 

in which the updates from local training sessions of edge 

devices are utilized to develop a common global model. This 

strategy reduces communication burden, as devices can train 

locally several times before sharing their weights, thus 

reducing the number of rounds required for convergence, as 

reported by McMaham et al. FedAvg performs optimally 

when MEC systems are subject to restricted bandwidths and 

high latency requirements. Usually, the FedAvg algorithm 

goes through the following three important stages: The 

process starts with the distribution of the global model to all 

devices and then individual training of the global model on 

each device's private dataset. The final step is aggregation, in 

which the central server will average the weights received 

from the updated models from all devices to produce the next 

global model. FedAvg implies the effective trade-off 

between the requirements for processing and data 

transmission. The algorithm is appropriate for small-

bandwidth and high-latency MEC applications dealing with 

heterogeneous devices and data patterns. FedAvg also poses 

challenges off-site, mainly because it relies on non-IID data 

and, thus, biased data models among various devices. 

 

There have been versions of the FedAvg set that address 

such problems. For instance, FedProx introduces a proximal 

term when optimizing the local objective function, 

improving convergence stability against client differences. 

FedNova and SCAFFOLD approaches address client drift by 

smoothing model updates with global gradient information, 

enhancing fairness and efficiency throughout the training 

cycle. These advanced strategies are essential in MEC 

environments because of the diversity of device attributes, 

including processing capacity, energy resources, and data 

quality. The success of federated learning in MEC systems 

depends on choosing an acceptable aggregation method. 

 

4.4. Data Privacy and Communication Efficiency 

Considerations 

The improved data privacy is the primary motivation for 

using federated learning in MEC environments. Regular 

centralized solutions require frequent data transfers to a 

centralized body, while federated learning puts data on the 

device to preserve privacy, only exchanging model updates 

and not raw data. Such architecture significantly reduces data 

leakage risks and helps adhere scrupulously to regulations 

such as GDPR and HIPAA, which are essential to industries 

such as healthcare, finance, and smart manufacturing. 

However, there are various challenges in promoting privacy 

in federated learning. Although the actual data is not sent 

directly, updates of models may inadvertently leak privacy 

since they can be vulnerable to gradient leakage or a model 

inversion attack. To address potentially objectionable privacy 

concerns, the FL frameworks now utilize a number of 

sophisticated privacy protection methods. Differential 

Privacy (DP), for example, purposefully injects noise into 

model updates to protect against the inferences of personal 

information from the aggregate result. Homomorphic 

Encryption and Secure Multi-Party Computation provide 

cryptographic protection to enable model aggregation 

without compromising individual update privacy. 

 

Efficient communication is also essential in achieving 

success in MEC-based federated learning. Limited and 

unstable bandwidth availability is common in edge networks, 

so minimising data exchanged per communication round is 

essential. Efforts such as model compression, gradient 

sparsification and weight quantization reduced the amount of 

data to be transferred considerably, alleviating training and 

network bandwidth requirements. Moreover, Top-k 

sparsification guarantees that only the most influential model 

updates are sent, and weight pruning is used to eliminate 

redundant links to maximize the network resources. The 

system achieves better resource utilization and efficiency by 

tuning the communication intervals to network, device and 

task requirements. By merging these privacy-preserving and 

communication-efficient approaches, MEC-based federated 

learning can allow high performance, scaling, and secure 

machine learning and thus emerge as a viable solution to 

real-time, data-intense applications. 

 

5. Proposed Approach 
The proposed method considers that using Federated 

Learning (FL) in Multi-Access Edge Computing (MEC) will 

allow efficiency and protection from privacy resource 

allocation. By combining distributed machine learning with 

edge computing, this model allows for reduced latency, 

curtailed bandwidth needs, and ensures privacy of user 

information, thereby making it ideal for high-speed 

applications with high volumes of data. This architectural 

design is customized to address challenges posed by non-IID 

data, different device capabilities and changing network 

conditions to ensure consistent performance in different 

MEC setups. 

 

5.1. Architecture of the Proposed FL-Based Model 

The proposed FL-based model's architecture uses the 

hierarchical nature of MEC systems, wherein data is 

generated at the edge, made locally available, and aggregated 

on a central server. Three essential layers support 

architecture. The End Devices Layer, the Edge Node Layer, 

and the Aggregation Server Layer. IoT devices and mobile 

clients at the base stage aggregate and analyze real-time data 

locally and use that information to train their distinct models. 

The IoT devices and mobile clients present at the base level 

make up the essential data providers for the FL system and 

help train the standard model. 
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The Edge Node Layer acts as a middle ground, 

collecting model updates from connected devices, 

performing partial aggregate and adjusting the allocation of 

resources according to local information. This layer 

processes updates around the boundaries, easing 

communication weights off the central server and 

accelerating scalability and response time. The Aggregation 

Server Layer typically resides within the core MEC 

controller or can be reached remotely on a cloud server and 

performs the final step of global model aggregation by 

aggregating all the data from the associated edge nodes into a 

complete, system-wide model. By splitting functionality into 

three layers, the solution optimises resource utilisation, 

reduces network traffic, and increases the system's reliability. 

 

Fig. 4 Proposed Resource Allocation Approach Using FL 

5.2. Feature Selection and Data Preprocessing 

Feature selection and data preprocessing optimization 

are paramount to obtaining the best results from an FL model 

in MEC environments. As a result of a network-centric 

implementation of FL, edge devices usually get data on 

heterogeneous quality, volume, and distribution. Such 

variability can threaten the accuracy of the model unless 

controlled.  
 

The proposed approach utilizes local and global feature 

selection techniques to maximize the training procedure by 

only selecting the most important and representative features. 

Devices clean noisy data, fill in missing values, and 

normalize features to satisfy the requirements of the global 

model within each data set.  
 

Devices employ min-max scaling, standardization, and 

outlier detection techniques to ensure the preprocessed data 

is consistent throughout all edge nodes. Furthermore, using 

domain-specific feature engineering, the approach can 

extract substantial meaning from raw sensor data; for 

instance, it can spot network congestion, device mobility 

trends, and necessary application latencies. 

The aggregation server improves feature selection by 

identifying universal trends among devices, reducing the 

dimensionality of data and pruning features that are not 

relevant. Applying this two-stage feature selection method 

enhances the model's precision and reduces hardware 

demands for data transfer, thus reducing needless 

information transferred between training rounds. 

 

5.3. Training and Update Mechanism 

The training and updating cycles in the proposed FL 

framework rely on periodic model interchange among the 

edge devices and the central server. The Edge devices use 

their data to individually train local models and perform 

many local updates before moving the model's parameters to 

the central aggregator. With the use of decentralized model 

development, the number of times data is sent to the central 

server is reduced, reducing the costs involved in 

communication and maintaining privacy-worthy personal 

information. The proposed scheme enhances model 

performance and decreases convergence time by using an 

adaptive learning rate and tuning batching parameters to 

align with the distinct functionality of single-edge devices. 

Start 
Data Collection from 

Edge Devices 
Data Preprocessing 

Feature Selection Local Model Training 
Model Aggregation at 

MEC Server 

Global Model Update 

Convergence Check  
(Yes: Resource 

Allocation Decision, 
No: Return to Data 

Collection)

Stop
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Such flexibility allows the low-power edge devices to be 

operational without burdening already constrained resources. 

Moreover, state-of-the-art gradient aggregation methods such 

as FedAvg or FedProx are applied to ensure that the global 

model accounts for the diverse data of MEC applications and 

captures their profiles. Updates made at edge devices are 

accumulated, and the central server updates the global model, 

considering differences in the number of data, device 

condition, and network situation. The process remains 

effective, with final iterations, so that the global model 

eventually converges to an optimal state and the resulting 

federated learning framework can support real-time edge 

applications efficiently and at scale. 

 

5.4. Convergence and Complexity Analysis 

The testing of convergence and complexity is central to 

proving the scalable and efficient performance of the 

proposed FL-based framework. Centralized models do not 

suffer from the problems of delayed gradients, non-IID data 

distributions, and asynchronous updates compared to 

federated systems, which are vulnerable to these 

considerations that impact model accuracy and training 

efficiency. The proposed method utilizes convergence 

acceleration techniques to improve performance and 

reliability,  including momentum optimization, adaptive 

learning rate, and gradient correction. 

 

Several factors (such as the number of devices 

participating, the size of local training datasets and the 

frequency of global aggregation) affect overall convergence 

time. The framework achieves efficiency and accuracy by 

changing parameters, ensuring that MEC applications with 

tight latency constraints respond within acceptable time 

frames. Complexity analysis shows that computational 

hunger in this setting is significantly lower than in classic 

centralized architectures because a significant fraction of 

training is done on the edge while offloading most 

computation tasks from the central server. The hierarchical 

aggregation's structure assists in minimizing communication 

delay that is part and parcel of FL, thus enhancing the 

system's scalability and robustness against failures. The 

distributed design will enable faster convergence and reduce 

energy requirements, making it suitable for large-scale MEC 

deployments. 

 

6. Performance Evaluation 
A sequence of thorough experiments showed the 

feasibility of the proposed FL-based resource allocation 

model using a realistic MEC simulation environment. 

Performance was assessed based on key metrics such as 

convergence rate, communication efficiency, energy 

consumption, and classification rate, which is a good 

representation of the operational constraints of the MEC 

network. In this section, the experiment setup is described, 

the evaluation criteria are presented, and the proposed model 

is compared with the classic baseline approaches. 

6.1. Experimental Setup 

Experimental evaluation was carried out within 

Kubernetes-managed edge clusters to replicate the distributed 

architecture of MEC systems with a variety of heterogeneous 

IoT devices and MEC servers that reflect integrated real-

world configurations. Two of the best-known image datasets 

were used in the training process: MNIST, with 60,000 

samples, and Fashion-MNIST, containing 70,000 grayscale 

images, were each composed of non-IID distributions using a 

Dirichlet distribution with a concentration parameter 

α=0.1\alpha = 0.1α=0.1 The data partitioning creates 

intended heterogeneity, mirroring the differentiated, 

personalized data structure in the real practical MEC 

situations. 

 

The neural network design employed lightweight CNNs 

optimized for edge computing with support for FedOpt to 

allow effective global model synchronization and provide 

higher convergence chances during asynchronous training. 

Deployment of 10-20 edge nodes with four cores and 4 GB 

RAM per node and 2 MEC servers with eight cores and 16 

GB RAM was performed to maintain an appropriate balance 

of processing power. The training parameters were 

configured to equal 10-20 local training cycles for a user, 10-

15 global iterations, and asynchronous model updates for the 

resource-constrained IoT devices, encouraging scalability. 

 

6.2. Evaluation Metrics 

Four primary efficiency metrics were used to evaluate 

the proposed Federated Learning (FL) model's effectiveness 

in the Mobile Edge Computing (MEC) environment, which 

all focused on different aspects of system performance. The 

Convergence Speed indicator measures how quickly the 

model achieves stability, that is, in terms of training epochs. 

It is essential for metric-driven assessment of training 

efficiency that agile adaptation in dynamic MEC 

environments is possible to lower latency and save resources. 

There is also a crucial metric, which is referred to as 

communication overhead, the quantity of data transferred 

between devices during training, which is especially 

important when working with a restricted amount of 

bandwidth available. Communication overhead is reduced, 

and system performance and processing of larger data 

volumes are sustained. We measured both Micro and Macro 

F1 scores within the different classes to evaluate the model's 

accuracy. These are particularly advantageous for 

heterogeneous situations as they measure generalizability and 

maintain unbiased class treatment; Macro F1 pays attention 

to the individual performance of classes, and Micro F1 

reflects overall accuracy. Monitoring energy consumption, 

illustrated in joules per training iteration, demonstrates the 

model's capability to operate devices with restricted capital 

continuously. Energy consumption minimization allows us to 

gain long-lasting devices and reduce operating expenses, 

which also helps increase the overall sustainability of MEC-

FL in the long term. By analyzing these metrics, we can 
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comprehensively understand how well the proposed model 

performs regarding efficiency, fairness, scalability, and 

energy efficiency. 

 

6.3. Benchmark Comparisons 

The performance of the proposed FL-based approach 

was tested by comparing it against both conventional 

centralized learning methods and the best FL techniques. 

Evaluates the effectiveness of centralized and federated 

learning in mobile edge computing; it emphasizes significant 

decreases in communication and energy caused by FL 

(federated learning)—performance comparisons with popular 

FL strategies, including FedMeta2Ag and MEC-AI HetFL.  

 

Table 1. Benchmark Comparisons - Centralized vs. Federated Learning 

Metric 
Centralized 

Learning 

Federated 

Learning 
Improvement 

Convergence Speed 12 epochs 16 epochs -33% (slower) 

Communication Overhead 500 MB 50 MB +90% (reduction) 

Energy Consumption 120 J/round 85 J/round +29% (reduction) 
 

Table 2. Comparison of Proposed Model with State-of-the-Art Approaches 

Model Test Accuracy (%) Training Time (min) Resource Efficiency Score 

FedMeta2Ag 92.0 22 8.7/10 

MEC-AI HetFL 94.5 18 9.2/10 

EdgeFed (Baseline) 89.3 28 7.1/10 

 

6.4. Results and Discussion 

The analysis of the experiments shows the distinct 

advantages of applying the FL approach. The proposed 

model drastically reduced communication overhead by 

sending just 50 MB during each training round instead of 

500 MB in centralized models, thereby accruing a data 

transfer reduction of 90%. Such efficiency is particularly 

important in MEC networks with limited bandwidth because 

decreasing communication costs directly influences the 

service's scalability and operational costs. By mitigating non-

IID data difficulties, the proposed solution achieved 

consistent performance with a 5% fluctuation in macro F1 

scores, while centralized solutions suffered a 15-20% 

reduction. Such stability is indispensable for practical use 

cases where edge devices provide unique, non-uniform 

information. In particular, the method made substantial 

savings on energy, with the model running at a rate of 85 

joules per round, i.e. a 29% cut against centralized 

alternatives. Such an upgrade significantly extends the 

battery's lifespan on IoT devices, making this one of the main 

advantages of continuous, decentralized operations. 

Scalability assessment revealed that the model's convergence 

had a 35% cut-off when more than 50 nodes were 

implemented, mainly due to gradient staleness and 

challenges in doing asynchronous computation. This implies 

that it is critical for a large-scale MEC deployment to modify 

the client selection and aggregation strategies to maintain 

performance. 

 

7. Discussion 
A Federated Learning (FL) technique for optimization of 

resources in MEC systems shares high levels of 

improvement in communication efficiency, scalability, and 

energy utilization. By processing training procedures in 

numerous edge nodes, the system makes managing massive 

amounts of data transfers to consolidated servers lighter, 

significantly lowering requirements on communication 

resources. Evaluation results show a 90% reduction in data 

dispersion using the proposed model compared to centralized 

techniques, showing that it fits ultra-dense networks with 

strict bandwidth limitations and latency requirements. 

Through this capability, the system is able to alleviate one of 

the major issues in MEC – the need to balance low latency 

with consistent accuracy and timely performance. However, 

the results indicate some inherent limitations to this 

approach. Requiring lower energy spending and quicker 

results, the model experiences a convergence slowdown 

when over 50 edge nodes are involved. This reduced 

convergence speed is primarily attributed to gradient 

staleness and the asynchronous nature of communications, 

which result in differences in the global model update. 

Further research should consider more exact client selection 

and aggregation methods, supported by instant feedback or 

adaptive learning correction, to improve global model 

synchronization. The presented approach effectively 

managed non-IID data distributions, which are common in 

real-world MEC systems, where edge devices generate data 

with different characteristics. Consistent performance, even 

in bad data contexts, is evidence of the reliability of the 

proposed solution. The need to explore sophisticated model 

aggregation techniques, which can include utilization of 

reinforcement learning or adaptive changes, in order to avoid 

excessive latency and energy overhead is still essential to see 

when the model can handle diverse data patterns. Testing the 

framework in actual operational MEC networks is required to 

evaluate the capacity to scale, handle faults, and maintain 

security in the field. Moreover, exploring the synergy 

between FL and edge caching, or proactive resource 

prediction, may deliver more efficient systems capable of 

responding better and providing reliable operation. 
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8. Conclusion 
A federated learning approach for resource allocation 

optimization in Multi-Access Edge Computing (MEC) was 

described to address data privacy, communication expense, 

and system scalability issues. The results of the experiments 

showed that the introduced framework reduces by up to 90% 

the amount of data transmission compared to traditional 

centralized learning, and the same levels of accuracy and 

energy efficiency are retained. Considering these aspects, the 

method is perfect for ultra-dense MEC infrastructures 

flooded with bandwidth scarcity and real-time performance 

requirements. The framework could handle non-IID data 

distributions and device capabilities and provide reliable 

performance for a broad spectrum of edge devices. While 

scalability showed shortcomings when measured above 50 

nodes, the approach still dominated over classical models in 

terms of energy efficiency and training speed, thus fitting for 

deployment at a large scale. To enhance scalability and 

sensitivity, future research will include the development of 

dynamic client selection algorithms and sophisticated model 

aggregation strategies to make the framework more flexible 

for the dynamic environment of MEC systems. Federated 

learning is rethinking MEC architectures through a scalable 

and privacy-protected method for next-generation 5G/6G 

networks. This research lays a strong foundation for 

developing decentralized AI, creating space for advanced 

intelligent edge computing applications. 

 

9. Future Work 
9.1. Scalability and Dynamic Client Selection 

Performance of Federated Learning (FL) in serving 

extensive MEC network architectures. Convergence by the 

global model slows down with an increase in edge nodes' 

attachment, primarily because of outdated gradients and 

variable local optimization updates. Subsequent studies may 

create adaptive algorithms for client selection that assess 

nodes based on the size of resource capacity, network latency 

and data quality to enable smoother aggregation of global 

models. Furthermore, integrating reinforcement learning or 

using multi-agent collaboration techniques might allow the 

system to adjust to changes in the network better, which will 

shrink the training times and increase model accuracy in 

general. 

 

9.2. Advanced Aggregation and Privacy Mechanisms 

To address the challenges of varying non-IID data and 

device characteristics, there is a need to explore more 

complex strategies for aggregation. Future solutions might be 

improved by incorporating personalized FL techniques such 

as cluster-based aggregation and meta-learning to better 

accommodate the variety of data distributions in practical 

MEC environments. To provide users with better privacy, as 

a possible solution to employ, arguing with differential 

privacy, secure multi-party computation, or homomorphic 

encryption could introduce strong security to sensitive data 

with the high accuracy of the model being maintained. Such 

advancements would lead to robust, secure, and scalable FL 

platforms that would be prominent for edge computing. They 

will allow the wider adoption of healthcare, smart city and 

industrial IoT solutions. 

9.3. Real-World Deployment and Performance 

Optimization 

Finally, while this study provided promising results in 

simulated environments, real-world validation remains 

critical. The construction of the proposed framework should 

continue with the implementation of the same to operational 

MEC networks, measuring performances under various 

network environments and managing real-time data. This 

involves realigning approaches to allocating resources to 

account for such as energy management, device movement, 

and changes in the demands of the users. By applying 

predictive analytics and edge caching, we can increase 

system responsiveness and move forward to fully 

autonomous intelligent MEC systems that can support next-

generation 5G/6G services. 
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